

Welcome to diffxpy’s documentation!

Contents:

	Installation

	API
	Differential expression tests: test

	Gene set enrichment: enrich

	Fit model to gene expression: fit

	Tutorials
	Differential testing

	Gene set enrichment: enrich

	Example work-flows on real data sets

	Parallelization
	tensorflow

	numpy/scipy

	Training
	Parameter estimation in diffxpy

	Training strategies

	Models
	Occurrence of estimator objects in diffxpy

	Structure of estimator objects

	References

Indices and tables

	Index

	Module Index

	Search Page

Installation

We assume that you have a python environment set up.

Firstly, you need to install batchglm which depdends on the PyPi packages and tensorflow and tensorflow-probability.
You can install these dependencies from source to optimze them to your hardware which can improve performance.
Note that both packages also have GPU versions which allows you to run the run-time limiting steps of diffxpy on GPUs.
The simplest installation of these dependencies is via pip: call:

pip install tf-nightly
pip install tfp-nightly

The nightly versions of tensorflow and tensorflow-probability are up-to-date versions of these packages.
Alternatively you can also install the major releases: call:

pip install tensorflow
pip install tensorflow-probability

You can then install batchglm from source by using the repository on GitHub [https://github.com/theislab/batchglm]:

	Chose a directory where you want batchglm to be located and cd into it.

	Clone the batchglm repository into this directory.

	cd into the root directory of batchglm.

	Install batchglm from source: call:

pip install -e .

Finally, you can then install diffxpy from source by using the repository on GitHub [https://github.com/theislab/diffxpy]:

	Chose a directory where you want batchglm to be located and cd into it.

	Clone the diffxpy repository into this directory.

	cd into the root directory of diffxpy.

	Install diffxpy from source: call:

pip install -e .

You can now use diffxpy in a python session by via the following import: call:

import diffxpy.api as de

API

Import diffxpy’s high-level API as:

import diffxpy.api as de

Differential expression tests: test

Run differential expression tests.
diffxpy distinguishes between single tests and multi tests:
Single tests perform a single hypothesis test for each gene whereas multi tests perform multiple tests per gene.

Single tests per gene

Single tests per gene are the standard differential expression scenario in which one p-value is computed per gene.
diffxpy provies infrastructure for likelihood ratio tests, Wald tests, t-tests and Wilcoxon tests.

	test.two_sample(data, anndata._core.raw.Raw, …)

	Perform differential expression test between two groups on adata object for each gene.

	test.wald(data, anndata._core.raw.Raw, …)

	Perform Wald test for differential expression for each gene.

	test.lrt(data, anndata._core.raw.Raw, …[, …])

	Perform log-likelihood ratio test for differential expression for each gene.

	test.t_test(data, anndata._core.raw.Raw, …)

	Perform Welch’s t-test for differential expression between two groups on adata object for each gene.

	test.rank_test(data, anndata._core.raw.Raw, …)

	Perform Mann-Whitney rank test (Wilcoxon rank-sum test) for differential expression between two groups on adata object for each gene.

Multiple tests per gene

diffxpy provides infrastructure to perform multiple tests per gene as:

	pairwise: pairwise comparisons across more than two groups (de.test.pairwise, e.g. clusters of cells against each other)

	versus_res:t tests of each group against the rest (de.test.versus_test, e.g. clusters of cells against the rest)

	partition: mapping a given differential test across each partition of a data set (de.test.partition, e.g. performing differential tests for treatment effects by a second experimental covariate or by cluster of cells).

	test.pairwise(data, anndata._core.raw.Raw, …)

	Perform pairwise differential expression test between two groups on adata object for each gene for all combinations of pairs of groups.

	test.versus_rest(data, …[, dtype])

	Perform pairwise differential expression test between two groups on adata object for each gene for each groups versus the rest of the data set.

	test.partition(data, anndata._core.raw.Raw, …)

	Perform differential expression test for each group.

Gene set enrichment: enrich

diffxpy provides infrastructure for gene set enrichment analysis downstream of differential expression analysis.
Specifically, reference gene set annotation data sets can be loaded or created and can be compared to diffxpy objects
or results from other differential expression tests.

Reference gene sets

	enrich.RefSets([sets, fn, type])

	Class for a list of gene sets.

Enrichment tests

	enrich.test(ref, det, scores, gene_ids[, …])

	Perform gene set enrichment.

Fit model to gene expression: fit

Diffxpy allows the user to fit models to gene expression only without conducting Wald or likelihood ratio tests.
Note that one can also extract similar model fits from differential expression test output objects if Wald or likelihood ratio test were used.
Alternatively, residuals can also be directly computed.
As for differential expression tests, the fitting can be distributed across multiple partitions of the data set (such as conditions or cell types).

	fit.model(data, anndata._core.raw.Raw, …)

	Fit model via maximum likelihood for each gene.

	fit.residuals(data, anndata._core.raw.Raw, …)

	Fits model for each gene and returns residuals.

	fit.partition(data, anndata._core.raw.Raw, …)

	Perform differential expression test for each group.

diffxpy.api.test.two_sample

	
diffxpy.api.test.two_sample(data: Union[anndata._core.anndata.AnnData, anndata._core.raw.Raw, numpy.ndarray, scipy.sparse.csr.csr_matrix, batchglm.models.base.input.InputDataBase], grouping: Union[str, numpy.ndarray, list], as_numeric: Union[List[str], Tuple[str], str] = (), test: str = 't-test', gene_names: Union[numpy.ndarray, list] = None, sample_description: pandas.core.frame.DataFrame = None, noise_model: str = None, size_factors: numpy.ndarray = None, batch_size: Union[None, int, Tuple[int, int]] = None, backend: str = 'numpy', train_args: dict = {}, training_strategy: Union[str, List[Dict[str, object]], Callable] = 'AUTO', is_sig_zerovar: bool = True, quick_scale: bool = None, dtype='float64', **kwargs) → diffxpy.testing.det._DifferentialExpressionTestSingle

	Perform differential expression test between two groups on adata object
for each gene.

This function wraps the selected statistical test for the scenario of
a two sample comparison. All unit_test offered in this wrapper
test for the difference of the mean parameter of both samples.
The exact unit_test are as follows (assuming the group labels
are saved in a column named “group”):

	
	“lrt” - (log-likelihood ratio test):

	Requires the fitting of 2 generalized linear models (full and reduced).
The models are automatically assembled as follows, use the de.test.lrt()
function if you would like to perform a different test.

	full model location parameter: ~ 1 + group

	full model scale parameter: ~ 1 + group

	reduced model location parameter: ~ 1

	reduced model scale parameter: ~ 1 + group

	
	“wald” - Wald test:

	Requires the fitting of 1 generalized linear models.
model location parameter: ~ 1 + group
model scale parameter: ~ 1 + group
Test the group coefficient of the location parameter model against 0.

	
	“t-test” - Welch’s t-test:

	Doesn’t require fitting of generalized linear models.
Welch’s t-test between both observation groups.

	
	“rank” - Wilcoxon rank sum (Mann-Whitney U) test:

	Doesn’t require fitting of generalized linear models.
Wilcoxon rank sum (Mann-Whitney U) test between both observation groups.

	Parameters

	
	data – Array-like, or anndata.Anndata object containing observations.
Input data matrix (observations x features) or (cells x genes).

	grouping – str, array

	column in data.obs/sample_description which contains the split of observations into the two groups.

	array of length num_observations containing group labels

	as_numeric – Which columns of sample_description to treat as numeric and
not as categorical. This yields columns in the design matrix
which do not correpond to one-hot encoded discrete factors.
This makes sense for number of genes, time, pseudotime or space
for example.

	test – str, statistical test to use. Possible options:

	’wald’: default

	’lrt’

	’t-test’

	’rank’

	gene_names – optional list/array of gene names which will be used if data does not implicitly store these

	sample_description – optional pandas.DataFrame containing sample annotations

	size_factors – 1D array of transformed library size factors for each cell in the
same order as in data

	noise_model – str, noise model to use in model-based unit_test. Possible options:

	’nb’: default

	batch_size – Argument controlling the memory load of the fitting procedure. For backends that allow
chunking of operations, this parameter controls the size of the batch / chunk.

	If backend is “tf1” or “tf2”: number of observations per batch

	If backend is “numpy”: Tuple of (number of observations per chunk, number of genes per chunk)

	backend – Which linear algebra library to chose. This impact the available noise models and optimizers /
training strategies. Available are:

	”numpy” numpy

	”tf1” tensorflow1.* >= 1.13

	”tf2” tensorflow2.*

	training_strategy – {str, function, list} training strategy to use. Can be:

	str: will use Estimator.TrainingStrategy[training_strategy] to train

	function: Can be used to implement custom training function will be called as
training_strategy(estimator).

	list of keyword dicts containing method arguments: Will call Estimator.train() once with each dict of
method arguments.

	is_sig_zerovar – Whether to assign p-value of 0 to a gene which has zero variance in both groups but not the same mean. If False,
the p-value is set to np.nan.

	quick_scale – Depending on the optimizer, scale will be fitted faster and maybe less accurate.

Useful in scenarios where fitting the exact scale is not absolutely necessary.

	dtype – Allows specifying the precision which should be used to fit data.

Should be “float32” for single precision or “float64” for double precision.

	kwargs – [Debugging] Additional arguments will be passed to the _fit method.

diffxpy.api.test.wald

	
diffxpy.api.test.wald(data: Union[anndata._core.anndata.AnnData, anndata._core.raw.Raw, numpy.ndarray, scipy.sparse.csr.csr_matrix, batchglm.models.base.input.InputDataBase], factor_loc_totest: Union[str, List[str]] = None, coef_to_test: Union[str, List[str]] = None, formula_loc: Union[None, str] = None, formula_scale: Union[None, str] = '~1', as_numeric: Union[List[str], Tuple[str], str] = (), init_a: Union[numpy.ndarray, str] = 'AUTO', init_b: Union[numpy.ndarray, str] = 'AUTO', gene_names: Union[numpy.ndarray, list] = None, sample_description: Union[None, pandas.core.frame.DataFrame] = None, dmat_loc: patsy.design_info.DesignMatrix = None, dmat_scale: patsy.design_info.DesignMatrix = None, constraints_loc: Union[None, List[str], Tuple[str, str], dict, numpy.ndarray] = None, constraints_scale: Union[None, List[str], Tuple[str, str], dict, numpy.ndarray] = None, noise_model: str = 'nb', size_factors: Union[numpy.ndarray, pandas.core.series.Series, str] = None, batch_size: Union[None, int, Tuple[int, int]] = None, backend: str = 'numpy', train_args: dict = {}, training_strategy: Union[str, List[Dict[str, object]], Callable] = 'AUTO', quick_scale: bool = False, dtype='float64', **kwargs)

	Perform Wald test for differential expression for each gene.

	Parameters

	
	data – Input data matrix (observations x features) or (cells x genes).

	factor_loc_totest – str, list of strings
List of factors of formula to test with Wald test.
E.g. “condition” or [“batch”, “condition”] if formula_loc would be “~ 1 + batch + condition”

	coef_to_test – If there are more than two groups specified by factor_loc_totest,
this parameter allows to specify the group which should be tested.
Alternatively, if factor_loc_totest is not given, this list sets
the exact coefficients which are to be tested.

	formula_loc – formula
model formula for location and scale parameter models.

	formula_scale – formula
model formula for scale parameter model.

	as_numeric – Which columns of sample_description to treat as numeric and
not as categorical. This yields columns in the design matrix
which do not correspond to one-hot encoded discrete factors.
This makes sense for number of genes, time, pseudotime or space
for example.

	init_a – (Optional) Low-level initial values for a.
Can be:

	
	str:

	
	”auto”: automatically choose best initialization

	”standard”: initialize intercept with observed mean

	”closed_form”: try to initialize with closed form

	np.ndarray: direct initialization of ‘a’

	init_b – (Optional) Low-level initial values for b
Can be:

	
	str:

	
	”auto”: automatically choose best initialization

	”standard”: initialize with zeros

	”closed_form”: try to initialize with closed form

	np.ndarray: direct initialization of ‘b’

	gene_names – optional list/array of gene names which will be used if data does not implicitly store these

	sample_description – optional pandas.DataFrame containing sample annotations

	dmat_loc – Pre-built location model design matrix.
This over-rides formula_loc and sample description information given in
data or sample_description.

	dmat_scale – Pre-built scale model design matrix.
This over-rides formula_scale and sample description information given in
data or sample_description.

	constraints_loc – Constraints for location model. Can be one of the following:

	
	np.ndarray:

	Array with constraints in rows and model parameters in columns.
Each constraint contains non-zero entries for the a of parameters that
has to sum to zero. This constraint is enforced by binding one parameter
to the negative sum of the other parameters, effectively representing that
parameter as a function of the other parameters. This dependent
parameter is indicated by a -1 in this array, the independent parameters
of that constraint (which may be dependent at an earlier constraint)
are indicated by a 1. You should only use this option
together with prebuilt design matrix for the location model, dmat_loc,
for example via de.utils.setup_constrained().

	
	dict:

	Every element of the dictionary corresponds to one set of equality constraints.
Each set has to be be an entry of the form {…, x: y, …}
where x is the factor to be constrained and y is a factor by which levels of x are grouped
and then constrained. Set y=”1” to constrain all levels of x to sum to one,
a single equality constraint.

	E.g.: {“batch”: “condition”} Batch levels within each condition are constrained to sum to

	zero. This is applicable if repeats of a an experiment within each condition
are independent so that the set-up ~1+condition+batch is perfectly confounded.

Can only group by non-constrained effects right now, use constraint_matrix_from_string
for other cases.

	
	list of strings or tuple of strings:

	String encoded equality constraints.

E.g. [“batch1 + batch2 + batch3 = 0”]

	
	None:

	No constraints are used, this is equivalent to using an identity matrix as a
constraint matrix.

	constraints_scale – Constraints for scale model. Can be one of the following:

	
	np.ndarray:

	Array with constraints in rows and model parameters in columns.
Each constraint contains non-zero entries for the a of parameters that
has to sum to zero. This constraint is enforced by binding one parameter
to the negative sum of the other parameters, effectively representing that
parameter as a function of the other parameters. This dependent
parameter is indicated by a -1 in this array, the independent parameters
of that constraint (which may be dependent at an earlier constraint)
are indicated by a 1. You should only use this option
together with prebuilt design matrix for the scale model, dmat_scale,
for example via de.utils.setup_constrained().

	
	dict:

	Every element of the dictionary corresponds to one set of equality constraints.
Each set has to be be an entry of the form {…, x: y, …}
where x is the factor to be constrained and y is a factor by which levels of x are grouped
and then constrained. Set y=”1” to constrain all levels of x to sum to one,
a single equality constraint.

	E.g.: {“batch”: “condition”} Batch levels within each condition are constrained to sum to

	zero. This is applicable if repeats of a an experiment within each condition
are independent so that the set-up ~1+condition+batch is perfectly confounded.

Can only group by non-constrained effects right now, use constraint_matrix_from_string
for other cases.

	
	list of strings or tuple of strings:

	String encoded equality constraints.

E.g. [“batch1 + batch2 + batch3 = 0”]

	
	None:

	No constraints are used, this is equivalent to using an identity matrix as a
constraint matrix.

	size_factors – 1D array of transformed library size factors for each cell in the
same order as in data or string-type column identifier of size-factor containing
column in sample description.

	noise_model – str, noise model to use in model-based unit_test. Possible options:

	’nb’: default

	batch_size – Argument controlling the memory load of the fitting procedure. For backends that allow
chunking of operations, this parameter controls the size of the batch / chunk.

	If backend is “tf1” or “tf2”: number of observations per batch

	If backend is “numpy”: Tuple of (number of observations per chunk, number of genes per chunk)

	backend – Which linear algebra library to chose. This impact the available noise models and optimizers /
training strategies. Available are:

	”numpy” numpy

	”tf1” tensorflow1.* >= 1.13

	”tf2” tensorflow2.*

	training_strategy – {str, function, list} training strategy to use. Can be:

	str: will use Estimator.TrainingStrategy[training_strategy] to train

	function: Can be used to implement custom training function will be called as
training_strategy(estimator).

	list of keyword dicts containing method arguments: Will call Estimator.train() once with each dict of
method arguments.

	quick_scale – Depending on the optimizer, scale will be fitted faster and maybe less accurate.

Useful in scenarios where fitting the exact scale is not absolutely necessary.

	dtype – Allows specifying the precision which should be used to fit data.

Should be “float32” for single precision or “float64” for double precision.

	kwargs – [Debugging] Additional arguments will be passed to the _fit method.

diffxpy.api.test.lrt

	
diffxpy.api.test.lrt(data: Union[anndata._core.anndata.AnnData, anndata._core.raw.Raw, numpy.ndarray, scipy.sparse.csr.csr_matrix, batchglm.models.base.input.InputDataBase], full_formula_loc: str, reduced_formula_loc: str, full_formula_scale: str = '~1', reduced_formula_scale: str = '~1', as_numeric: Union[List[str], Tuple[str], str] = (), init_a: Union[numpy.ndarray, str] = 'AUTO', init_b: Union[numpy.ndarray, str] = 'AUTO', gene_names: Union[numpy.ndarray, list] = None, sample_description: pandas.core.frame.DataFrame = None, noise_model='nb', size_factors: Union[numpy.ndarray, pandas.core.series.Series] = None, batch_size: Union[None, int, Tuple[int, int]] = None, backend: str = 'numpy', train_args: dict = {}, training_strategy: Union[str, List[Dict[str, object]], Callable] = 'AUTO', quick_scale: bool = False, dtype='float64', **kwargs)

	Perform log-likelihood ratio test for differential expression for each gene.

Note that lrt() does not support constraints in its current form. Please
use wald() for constraints.

	Parameters

	
	data – Input data matrix (observations x features) or (cells x genes).

	full_formula_loc – formula
Full model formula for location parameter model.

	reduced_formula_loc – formula
Reduced model formula for location and scale parameter models.

	full_formula_scale – formula
Full model formula for scale parameter model.

	reduced_formula_scale – formula
Reduced model formula for scale parameter model.

	as_numeric – Which columns of sample_description to treat as numeric and
not as categorical. This yields columns in the design matrix
which do not correpond to one-hot encoded discrete factors.
This makes sense for number of genes, time, pseudotime or space
for example.

	init_a – (Optional) Low-level initial values for a.
Can be:

	
	str:

	
	”auto”: automatically choose best initialization

	”standard”: initialize intercept with observed mean

	”init_model”: initialize with another model (see ìnit_model parameter)

	”closed_form”: try to initialize with closed form

	np.ndarray: direct initialization of ‘a’

	init_b – (Optional) Low-level initial values for b
Can be:

	
	str:

	
	”auto”: automatically choose best initialization

	”standard”: initialize with zeros

	”init_model”: initialize with another model (see ìnit_model parameter)

	”closed_form”: try to initialize with closed form

	np.ndarray: direct initialization of ‘b’

	gene_names – optional list/array of gene names which will be used if data does not implicitly store these

	sample_description – optional pandas.DataFrame containing sample annotations

	noise_model – str, noise model to use in model-based unit_test. Possible options:

	’nb’: default

	size_factors – 1D array of transformed library size factors for each cell in the
same order as in data or string-type column identifier of size-factor containing
column in sample description.

	batch_size – Argument controlling the memory load of the fitting procedure. For backends that allow
chunking of operations, this parameter controls the size of the batch / chunk.

	If backend is “tf1” or “tf2”: number of observations per batch

	If backend is “numpy”: Tuple of (number of observations per chunk, number of genes per chunk)

	backend – Which linear algebra library to chose. This impact the available noise models and optimizers /
training strategies. Available are:

	”numpy” numpy

	”tf1” tensorflow1.* >= 1.13

	”tf2” tensorflow2.*

	training_strategy – {str, function, list} training strategy to use. Can be:

	str: will use Estimator.TrainingStrategy[training_strategy] to train

	function: Can be used to implement custom training function will be called as
training_strategy(estimator).

	list of keyword dicts containing method arguments: Will call Estimator.train() once with each dict of
method arguments.

Example:

[
 {"learning_rate": 0.5, },
 {"learning_rate": 0.05, },
]

This will run training first with learning rate = 0.5 and then with learning rate = 0.05.

	quick_scale – Depending on the optimizer, scale will be fitted faster and maybe less accurate.

Useful in scenarios where fitting the exact scale is not absolutely necessary.

	dtype – Allows specifying the precision which should be used to fit data.

Should be “float32” for single precision or “float64” for double precision.

	kwargs – [Debugging] Additional arguments will be passed to the _fit method.

diffxpy.api.test.t_test

	
diffxpy.api.test.t_test(data: Union[anndata._core.anndata.AnnData, anndata._core.raw.Raw, numpy.ndarray, scipy.sparse.csr.csr_matrix, batchglm.models.base.input.InputDataBase], grouping, gene_names: Union[numpy.ndarray, list] = None, sample_description: pandas.core.frame.DataFrame = None, is_logged: bool = False, is_sig_zerovar: bool = True)

	Perform Welch’s t-test for differential expression
between two groups on adata object for each gene.

	Parameters

	
	data – Array-like, or anndata.Anndata object containing observations.
Input data matrix (observations x features) or (cells x genes).

	grouping – str, array

	column in data.obs/sample_description which contains the split of observations into the two groups.

	array of length num_observations containing group labels

	gene_names – optional list/array of gene names which will be used if data does not implicitly store these

	sample_description – optional pandas.DataFrame containing sample annotations

	is_logged – Whether data is already logged. If True, log-fold changes are computed as fold changes on this data.
If False, log-fold changes are computed as log-fold changes on this data.

	is_sig_zerovar – Whether to assign p-value of 0 to a gene which has zero variance in both groups but not the same mean. If False,
the p-value is set to np.nan.

diffxpy.api.test.rank_test

	
diffxpy.api.test.rank_test(data: Union[anndata._core.anndata.AnnData, anndata._core.raw.Raw, numpy.ndarray, scipy.sparse.csr.csr_matrix, batchglm.models.base.input.InputDataBase], grouping: Union[str, numpy.ndarray, list], gene_names: Union[numpy.ndarray, list] = None, sample_description: pandas.core.frame.DataFrame = None, is_logged: bool = False, is_sig_zerovar: bool = True)

	Perform Mann-Whitney rank test (Wilcoxon rank-sum test) for differential expression
between two groups on adata object for each gene.

	Parameters

	
	data – Array-like, or anndata.Anndata object containing observations.
Input data matrix (observations x features) or (cells x genes).

	grouping – str, array

	column in data.obs/sample_description which contains the split of observations into the two groups.

	array of length num_observations containing group labels

	gene_names – optional list/array of gene names which will be used if data does not implicitly store these

	sample_description – optional pandas.DataFrame containing sample annotations

	is_logged – Whether data is already logged. If True, log-fold changes are computed as fold changes on this data.
If False, log-fold changes are computed as log-fold changes on this data.

	is_sig_zerovar – Whether to assign p-value of 0 to a gene which has zero variance in both groups but not the same mean. If False,
the p-value is set to np.nan.

diffxpy.api.test.pairwise

	
diffxpy.api.test.pairwise(data: Union[anndata._core.anndata.AnnData, anndata._core.raw.Raw, numpy.ndarray, scipy.sparse.csr.csr_matrix, batchglm.models.base.input.InputDataBase], grouping: Union[str, numpy.ndarray, list], as_numeric: Union[List[str], Tuple[str], str] = (), test: str = 'z-test', lazy: bool = True, gene_names: Union[numpy.ndarray, list] = None, sample_description: pandas.core.frame.DataFrame = None, noise_model: str = 'nb', size_factors: numpy.ndarray = None, batch_size: Union[None, int, Tuple[int, int]] = None, backend: str = 'numpy', train_args: dict = {}, training_strategy: Union[str, List[Dict[str, object]], Callable] = 'AUTO', is_sig_zerovar: bool = True, quick_scale: bool = False, dtype='float64', pval_correction: str = 'global', keep_full_test_objs: bool = False, **kwargs)

	Perform pairwise differential expression test between two groups on adata object
for each gene for all combinations of pairs of groups.

This function wraps the selected statistical test for the scenario of
a two sample comparison. All unit_test offered in this wrapper
test for the difference of the mean parameter of both samples. We note
that the much more efficient default method is coefficient based
and only requires one model fit.

The exact unit_test are as follows (assuming the group labels
are saved in a column named “group”), each test is executed
on the subset of the data that only contains observations of a given
pair of groups:

	
	“lrt” -log-likelihood ratio test:

	Requires the fitting of 2 generalized linear models (full and reduced).

	full model location parameter: ~ 1 + group

	full model scale parameter: ~ 1 + group

	reduced model location parameter: ~ 1

	reduced model scale parameter: ~ 1 + group

	
	“wald” - Wald test:

	Requires the fitting of 1 generalized linear models.
model location parameter: ~ 1 + group
model scale parameter: ~ 1 + group
Test the group coefficient of the location parameter model against 0.

	
	“t-test” - Welch’s t-test:

	Doesn’t require fitting of generalized linear models.
Welch’s t-test between both observation groups.

	
	“rank” - Wilcoxon rank sum (Mann-Whitney U) test:

	Doesn’t require fitting of generalized linear models.
Wilcoxon rank sum (Mann-Whitney U) test between both observation groups.

	Parameters

	
	data – Array-like, or anndata.Anndata object containing observations.
Input data matrix (observations x features) or (cells x genes).

	grouping – str, array

	column in data.obs/sample_description which contains the split of observations into the two groups.

	array of length num_observations containing group labels

	as_numeric – Which columns of sample_description to treat as numeric and
not as categorical. This yields columns in the design matrix
which do not correpond to one-hot encoded discrete factors.
This makes sense for number of genes, time, pseudotime or space
for example.

	test – str, statistical test to use. Possible options:

	’z-test’: default

	’wald’

	’lrt’

	’t-test’

	’rank’

	lazy – bool, whether to enable lazy results evaluation.
This is only possible if test==”ztest” and yields an output object which computes
p-values etc. only upon request of certain pairs. This makes sense if the entire
gene x groups x groups matrix which contains all pairwise p-values, q-values or
log-fold changes is very large and may not fit into memory, especially if only
a certain subset of the pairwise comparisons is desired anyway.

	gene_names – optional list/array of gene names which will be used if data does not implicitly store these

	sample_description – optional pandas.DataFrame containing sample annotations

	size_factors – 1D array of transformed library size factors for each cell in the
same order as in data

	noise_model – str, noise model to use in model-based unit_test. Possible options:

	’nb’: default

	batch_size – Argument controlling the memory load of the fitting procedure. For backends that allow
chunking of operations, this parameter controls the size of the batch / chunk.

	If backend is “tf1” or “tf2”: number of observations per batch

	If backend is “numpy”: Tuple of (number of observations per chunk, number of genes per chunk)

	backend – Which linear algebra library to chose. This impact the available noise models and optimizers /
training strategies. Available are:

	”numpy” numpy

	”tf1” tensorflow1.* >= 1.13

	”tf2” tensorflow2.*

	training_strategy – {str, function, list} training strategy to use. Can be:

	str: will use Estimator.TrainingStrategy[training_strategy] to train

	function: Can be used to implement custom training function will be called as
training_strategy(estimator).

	list of keyword dicts containing method arguments: Will call Estimator.train() once with each dict of
method arguments.

	quick_scale – Depending on the optimizer, scale will be fitted faster and maybe less accurate.

Useful in scenarios where fitting the exact scale is not absolutely necessary.

	dtype – Allows specifying the precision which should be used to fit data.

Should be “float32” for single precision or “float64” for double precision.

	pval_correction – Choose between global and test-wise correction.
Can be:

	”global”: correct all p-values in one operation

	”by_test”: correct the p-values of each test individually

	keep_full_test_objs – [Debugging] keep the individual test objects; currently valid for test != “z-test”.

	is_sig_zerovar – Whether to assign p-value of 0 to a gene which has zero variance in both groups but not the same mean. If False,
the p-value is set to np.nan.

	kwargs – [Debugging] Additional arguments will be passed to the _fit method.

diffxpy.api.test.versus_rest

	
diffxpy.api.test.versus_rest(data: Union[anndata._core.anndata.AnnData, anndata._core.raw.Raw, numpy.ndarray, scipy.sparse.csr.csr_matrix, batchglm.models.base.input.InputDataBase], grouping: Union[str, numpy.ndarray, list], as_numeric: Union[List[str], Tuple[str], str] = (), test: str = 'wald', gene_names: Union[numpy.ndarray, list] = None, sample_description: pandas.core.frame.DataFrame = None, noise_model: str = None, size_factors: numpy.ndarray = None, batch_size: Union[None, int, Tuple[int, int]] = None, backend: str = 'numpy', train_args: dict = {}, training_strategy: Union[str, List[Dict[str, object]], Callable] = 'AUTO', is_sig_zerovar: bool = True, quick_scale: bool = None, dtype='float64', pval_correction: str = 'global', keep_full_test_objs: bool = False, **kwargs)

	Perform pairwise differential expression test between two groups on adata object
for each gene for each groups versus the rest of the data set.

This function wraps the selected statistical test for the scenario of
a two sample comparison. All unit_test offered in this wrapper
test for the difference of the mean parameter of both samples. We note
that the much more efficient default method is coefficient based
and only requires one model fit.

The exact unit_test are as follows (assuming the group labels
are saved in a column named “group”), each test is executed
on the entire data and the labels are modified so that the target group
is one group and the remaining groups are allocated to the second reference
group):

	
	“lrt” - log-likelihood ratio test):

	Requires the fitting of 2 generalized linear models (full and reduced).

	full model location parameter: ~ 1 + group

	full model scale parameter: ~ 1 + group

	reduced model location parameter: ~ 1

	reduced model scale parameter: ~ 1 + group

	
	“wald” - Wald test:

	Requires the fitting of 1 generalized linear models.
model location parameter: ~ 1 + group
model scale parameter: ~ 1 + group
Test the group coefficient of the location parameter model against 0.

	
	“t-test” - Welch’s t-test:

	Doesn’t require fitting of generalized linear models.
Welch’s t-test between both observation groups.

	
	“rank” - Wilcoxon rank sum (Mann-Whitney U) test:

	Doesn’t require fitting of generalized linear models.
Wilcoxon rank sum (Mann-Whitney U) test between both observation groups.

	Parameters

	
	data – Array-like or anndata.Anndata object containing observations.
Input data matrix (observations x features) or (cells x genes).

	grouping – str, array

	column in data.obs/sample_description which contains the split of observations into the two groups.

	array of length num_observations containing group labels

	as_numeric – Which columns of sample_description to treat as numeric and
not as categorical. This yields columns in the design matrix
which do not correpond to one-hot encoded discrete factors.
This makes sense for number of genes, time, pseudotime or space
for example.

	test – str, statistical test to use. Possible options (see function description):

	’wald’

	’lrt’

	’t-test’

	’rank’

	gene_names – optional list/array of gene names which will be used if data does not implicitly store these

	sample_description – optional pandas.DataFrame containing sample annotations

	pval_correction – Choose between global and test-wise correction.
Can be:

	”global”: correct all p-values in one operation

	”by_test”: correct the p-values of each test individually

	size_factors – 1D array of transformed library size factors for each cell in the
same order as in data

	noise_model – str, noise model to use in model-based unit_test. Possible options:

	’nb’: default

	batch_size – Argument controlling the memory load of the fitting procedure. For backends that allow
chunking of operations, this parameter controls the size of the batch / chunk.

	If backend is “tf1” or “tf2”: number of observations per batch

	If backend is “numpy”: Tuple of (number of observations per chunk, number of genes per chunk)

	backend – Which linear algebra library to chose. This impact the available noise models and optimizers /
training strategies. Available are:

	”numpy” numpy

	”tf1” tensorflow1.* >= 1.13

	”tf2” tensorflow2.*

	training_strategy – {str, function, list} training strategy to use. Can be:

	str: will use Estimator.TrainingStrategy[training_strategy] to train

	function: Can be used to implement custom training function will be called as
training_strategy(estimator).

	list of keyword dicts containing method arguments: Will call Estimator.train() once with each dict of
method arguments.

	quick_scale – Depending on the optimizer, scale will be fitted faster and maybe less accurate.

Useful in scenarios where fitting the exact scale is not absolutely necessary.

	dtype – Allows specifying the precision which should be used to fit data.

Should be “float32” for single precision or “float64” for double precision.

	pval_correction – Choose between global and test-wise correction.
Can be:

	”global”: correct all p-values in one operation

	”by_test”: correct the p-values of each test individually

	is_sig_zerovar – Whether to assign p-value of 0 to a gene which has zero variance in both groups but not the same mean. If False,
the p-value is set to np.nan.

	kwargs – [Debugging] Additional arguments will be passed to the _fit method.

diffxpy.api.test.partition

	
diffxpy.api.test.partition(data: Union[anndata._core.anndata.AnnData, anndata._core.raw.Raw, numpy.ndarray, scipy.sparse.csr.csr_matrix, batchglm.models.base.input.InputDataBase], parts: Union[str, numpy.ndarray, list], gene_names: Union[numpy.ndarray, list] = None, sample_description: pandas.core.frame.DataFrame = None)

	Perform differential expression test for each group. This class handles
the partitioning of the data set, the differential test callls and
the sumamry of the individual tests into one
DifferentialExpressionTestMulti object. All functions the yield
DifferentialExpressionTestSingle objects can be performed on each
partition.

Wraps _Partition so that doc strings are nice.

	Parameters

	
	data – Array-like or anndata.Anndata object containing observations.
Input data matrix (observations x features) or (cells x genes).

	parts – str, array

	column in data.obs/sample_description which contains the split of observations into the two groups.

	array of length num_observations containing group labels

	gene_names – optional list/array of gene names which will be used if data does not implicitly store these

	sample_description – optional pandas.DataFrame containing sample annotations

diffxpy.api.enrich.RefSets

	
class diffxpy.api.enrich.RefSets(sets=None, fn=None, type='gmt')

	Class for a list of gene sets.

Input:
1. Read gene sets from file.
2. Give a list with gene sets.
3. Manually add gene sets one by one.

.gmt files can be downloaded from http://software.broadinstitute.org/gsea/msigdb/collections.jsp for example.

	
__init__(sets=None, fn=None, type='gmt')

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__([sets, fn, type])

	Initialize self.

	add(id, source, gene_ids)

	Add a gene set manually.

	clean(ids)

	Only keep gene ids that are contained within a full reference set of ids.

	get_set(id)

	Return the set with a given set identifier.

	grepv_sets(x)

	Search gene set identifiers for a substring.

	load_sets(sets[, type])

	Load gene sets from python list.

	overlap(enq_set[, set_id])

	Count number of overlapping genes between an internal sets and a reference set.

	read_from_file(fn[, type])

	Process gene sets from file.

	subset(idx)

	Subset RefSets object.

	subset_bykey(keys)

	Only keep sets that are contain at least one of a list of key strings in their identifier.

diffxpy.api.enrich.test

	
diffxpy.api.enrich.test(ref: diffxpy.enrichment.enrich.RefSets, det: Optional[diffxpy.testing.det._DifferentialExpressionTest] = None, scores: Optional[numpy.array] = None, gene_ids: Optional[list] = None, threshold=0.05, incl_all_zero=False, all_ids=None, clean_ref=False, capital=True)

	Perform gene set enrichment.

Wrapper for Enrich. Just wrote this so that Enrich shows up with a
nice doc string and that the call to this is de.enrich.test which
makes more sense to me than de.enrich.Enrich.

	Parameters

	
	ref – The annotated gene sets against which enrichment is tested.

	det – The differential expression results object which is tested
for enrichment in the gene sets.

	scores – Alternative to DETest, vector of scores (scalar per gene) which are then
used to discretize gene list. This can for example be corrected p-values from a differential expression
test, in that case the parameter threshold would be a significance threshold.

	gene_ids – If pval was supplied instead of DETest, use gene_ids to supply the
vector of gene identifiers (strings) that correspond to the p-values
which can be matched against the identifiers in the sets in RefSets.

	threshold – Threshold of parameter scores at which a gene is included as a hit: In the case
of differential test p-values in scores, threshold is the significance threshold.

	incl_all_zero – Wehther to include genes in gene universe which were all zero.

	all_ids – Set of all gene identifiers, this is used as the background set in the
hypergeometric test. Only supply this if not all genes were tested
and are supplied above in DETest or gene_ids.

	clean_ref – Whether or not to only retain gene identifiers in RefSets that occur in
the background set of identifiers supplied here through all_ids.

	capital – Make all gene IDs captial.

diffxpy.api.fit.model

	
diffxpy.api.fit.model(data: Union[anndata._core.anndata.AnnData, anndata._core.raw.Raw, numpy.ndarray, scipy.sparse.csr.csr_matrix, batchglm.models.base.input.InputDataBase], formula_loc: Union[None, str] = None, formula_scale: Union[None, str] = '~1', as_numeric: Union[List[str], Tuple[str], str] = (), init_a: Union[numpy.ndarray, str] = 'AUTO', init_b: Union[numpy.ndarray, str] = 'AUTO', gene_names: Union[numpy.ndarray, list] = None, sample_description: Union[None, pandas.core.frame.DataFrame] = None, dmat_loc: patsy.design_info.DesignMatrix = None, dmat_scale: patsy.design_info.DesignMatrix = None, constraints_loc: Union[None, List[str], Tuple[str, str], dict, numpy.ndarray] = None, constraints_scale: Union[None, List[str], Tuple[str, str], dict, numpy.ndarray] = None, noise_model: str = 'nb', size_factors: Union[numpy.ndarray, pandas.core.series.Series, str] = None, batch_size: int = None, training_strategy: Union[str, List[Dict[str, object]], Callable] = 'AUTO', quick_scale: bool = False, dtype='float64', **kwargs)

	Fit model via maximum likelihood for each gene.

	Parameters

	
	data – Input data matrix (observations x features) or (cells x genes).

	formula_loc – formula
model formula for location and scale parameter models.
If not specified, formula will be used instead.

	formula_scale – formula
model formula for scale parameter model.
If not specified, formula will be used instead.

	as_numeric – Which columns of sample_description to treat as numeric and
not as categorical. This yields columns in the design matrix
which do not correspond to one-hot encoded discrete factors.
This makes sense for number of genes, time, pseudotime or space
for example.

	init_a – (Optional) Low-level initial values for a.
Can be:

	
	str:

	
	”auto”: automatically choose best initialization

	”standard”: initialize intercept with observed mean

	”closed_form”: try to initialize with closed form

	np.ndarray: direct initialization of ‘a’

	init_b – (Optional) Low-level initial values for b
Can be:

	
	str:

	
	”auto”: automatically choose best initialization

	”standard”: initialize with zeros

	”closed_form”: try to initialize with closed form

	np.ndarray: direct initialization of ‘b’

	gene_names – optional list/array of gene names which will be used if data does not implicitly store these

	sample_description – optional pandas.DataFrame containing sample annotations

	dmat_loc – Pre-built location model design matrix.
This over-rides formula_loc and sample description information given in
data or sample_description.

	dmat_scale – Pre-built scale model design matrix.
This over-rides formula_scale and sample description information given in
data or sample_description.

	constraints_loc – Constraints for location model. Can be one of the following:

	
	np.ndarray:

	Array with constraints in rows and model parameters in columns.
Each constraint contains non-zero entries for the a of parameters that
has to sum to zero. This constraint is enforced by binding one parameter
to the negative sum of the other parameters, effectively representing that
parameter as a function of the other parameters. This dependent
parameter is indicated by a -1 in this array, the independent parameters
of that constraint (which may be dependent at an earlier constraint)
are indicated by a 1. You should only use this option
together with prebuilt design matrix for the location model, dmat_loc,
for example via de.utils.setup_constrained().

	
	dict:

	Every element of the dictionary corresponds to one set of equality constraints.
Each set has to be be an entry of the form {…, x: y, …}
where x is the factor to be constrained and y is a factor by which levels of x are grouped
and then constrained. Set y=”1” to constrain all levels of x to sum to one,
a single equality constraint.

	E.g.: {“batch”: “condition”} Batch levels within each condition are constrained to sum to

	zero. This is applicable if repeats of a an experiment within each condition
are independent so that the set-up ~1+condition+batch is perfectly confounded.

Can only group by non-constrained effects right now, use constraint_matrix_from_string
for other cases.

	
	list of strings or tuple of strings:

	String encoded equality constraints.

E.g. [“batch1 + batch2 + batch3 = 0”]

	
	None:

	No constraints are used, this is equivalent to using an identity matrix as a
constraint matrix.

	constraints_scale – Constraints for scale model. Can be one of the following:

	
	np.ndarray:

	Array with constraints in rows and model parameters in columns.
Each constraint contains non-zero entries for the a of parameters that
has to sum to zero. This constraint is enforced by binding one parameter
to the negative sum of the other parameters, effectively representing that
parameter as a function of the other parameters. This dependent
parameter is indicated by a -1 in this array, the independent parameters
of that constraint (which may be dependent at an earlier constraint)
are indicated by a 1. You should only use this option
together with prebuilt design matrix for the scale model, dmat_scale,
for example via de.utils.setup_constrained().

	
	dict:

	Every element of the dictionary corresponds to one set of equality constraints.
Each set has to be be an entry of the form {…, x: y, …}
where x is the factor to be constrained and y is a factor by which levels of x are grouped
and then constrained. Set y=”1” to constrain all levels of x to sum to one,
a single equality constraint.

	E.g.: {“batch”: “condition”} Batch levels within each condition are constrained to sum to

	zero. This is applicable if repeats of a an experiment within each condition
are independent so that the set-up ~1+condition+batch is perfectly confounded.

Can only group by non-constrained effects right now, use constraint_matrix_from_string
for other cases.

	
	list of strings or tuple of strings:

	String encoded equality constraints.

E.g. [“batch1 + batch2 + batch3 = 0”]

	
	None:

	No constraints are used, this is equivalent to using an identity matrix as a
constraint matrix.

	size_factors – 1D array of transformed library size factors for each cell in the
same order as in data or string-type column identifier of size-factor containing
column in sample description.

	noise_model – str, noise model to use in model-based unit_test. Possible options:

	’nb’: default

	batch_size – The batch size to use for the estimator.

	training_strategy – {str, function, list} training strategy to use. Can be:

	str: will use Estimator.TrainingStrategy[training_strategy] to train

	function: Can be used to implement custom training function will be called as
training_strategy(estimator).

	list of keyword dicts containing method arguments: Will call Estimator.train() once with each dict of
method arguments.

	quick_scale – Depending on the optimizer, scale will be fitted faster and maybe less accurate.

Useful in scenarios where fitting the exact scale is not absolutely necessary.

	dtype – Allows specifying the precision which should be used to fit data.

Should be “float32” for single precision or “float64” for double precision.

	kwargs – [Debugging] Additional arguments will be passed to the _fit method.

	Returns

	An estimator instance that contains all estimation relevant attributes and the model in estim.model.
The attributes of the model depend on the noise model and the covariates used.
We provide documentation for the model class in the model section of the documentation.

diffxpy.api.fit.residuals

	
diffxpy.api.fit.residuals(data: Union[anndata._core.anndata.AnnData, anndata._core.raw.Raw, numpy.ndarray, scipy.sparse.csr.csr_matrix, batchglm.models.base.input.InputDataBase], formula_loc: Union[None, str] = None, formula_scale: Union[None, str] = '~1', as_numeric: Union[List[str], Tuple[str], str] = (), init_a: Union[numpy.ndarray, str] = 'AUTO', init_b: Union[numpy.ndarray, str] = 'AUTO', gene_names: Union[numpy.ndarray, list] = None, sample_description: Union[None, pandas.core.frame.DataFrame] = None, dmat_loc: patsy.design_info.DesignMatrix = None, dmat_scale: patsy.design_info.DesignMatrix = None, constraints_loc: Union[None, List[str], Tuple[str, str], dict, numpy.ndarray] = None, constraints_scale: Union[None, List[str], Tuple[str, str], dict, numpy.ndarray] = None, noise_model: str = 'nb', size_factors: Union[numpy.ndarray, pandas.core.series.Series, str] = None, batch_size: int = None, training_strategy: Union[str, List[Dict[str, object]], Callable] = 'AUTO', quick_scale: bool = False, dtype='float64', **kwargs)

	Fits model for each gene and returns residuals.

	Parameters

	
	data – Input data matrix (observations x features) or (cells x genes).

	formula_loc – formula
model formula for location and scale parameter models.
If not specified, formula will be used instead.

	formula_scale – formula
model formula for scale parameter model.
If not specified, formula will be used instead.

	as_numeric – Which columns of sample_description to treat as numeric and
not as categorical. This yields columns in the design matrix
which do not correspond to one-hot encoded discrete factors.
This makes sense for number of genes, time, pseudotime or space
for example.

	init_a – (Optional) Low-level initial values for a.
Can be:

	
	str:

	
	”auto”: automatically choose best initialization

	”standard”: initialize intercept with observed mean

	”closed_form”: try to initialize with closed form

	np.ndarray: direct initialization of ‘a’

	init_b – (Optional) Low-level initial values for b
Can be:

	
	str:

	
	”auto”: automatically choose best initialization

	”standard”: initialize with zeros

	”closed_form”: try to initialize with closed form

	np.ndarray: direct initialization of ‘b’

	gene_names – optional list/array of gene names which will be used if data does not implicitly store these

	sample_description – optional pandas.DataFrame containing sample annotations

	dmat_loc – Pre-built location model design matrix.
This over-rides formula_loc and sample description information given in
data or sample_description.

	dmat_scale – Pre-built scale model design matrix.
This over-rides formula_scale and sample description information given in
data or sample_description.

	constraints_loc – Constraints for location model. Can be one of the following:

	
	np.ndarray:

	Array with constraints in rows and model parameters in columns.
Each constraint contains non-zero entries for the a of parameters that
has to sum to zero. This constraint is enforced by binding one parameter
to the negative sum of the other parameters, effectively representing that
parameter as a function of the other parameters. This dependent
parameter is indicated by a -1 in this array, the independent parameters
of that constraint (which may be dependent at an earlier constraint)
are indicated by a 1. You should only use this option
together with prebuilt design matrix for the location model, dmat_loc,
for example via de.utils.setup_constrained().

	
	dict:

	Every element of the dictionary corresponds to one set of equality constraints.
Each set has to be be an entry of the form {…, x: y, …}
where x is the factor to be constrained and y is a factor by which levels of x are grouped
and then constrained. Set y=”1” to constrain all levels of x to sum to one,
a single equality constraint.

	E.g.: {“batch”: “condition”} Batch levels within each condition are constrained to sum to

	zero. This is applicable if repeats of a an experiment within each condition
are independent so that the set-up ~1+condition+batch is perfectly confounded.

Can only group by non-constrained effects right now, use constraint_matrix_from_string
for other cases.

	
	list of strings or tuple of strings:

	String encoded equality constraints.

E.g. [“batch1 + batch2 + batch3 = 0”]

	
	None:

	No constraints are used, this is equivalent to using an identity matrix as a
constraint matrix.

	constraints_scale – Constraints for scale model. Can be one of the following:

	
	np.ndarray:

	Array with constraints in rows and model parameters in columns.
Each constraint contains non-zero entries for the a of parameters that
has to sum to zero. This constraint is enforced by binding one parameter
to the negative sum of the other parameters, effectively representing that
parameter as a function of the other parameters. This dependent
parameter is indicated by a -1 in this array, the independent parameters
of that constraint (which may be dependent at an earlier constraint)
are indicated by a 1. You should only use this option
together with prebuilt design matrix for the scale model, dmat_scale,
for example via de.utils.setup_constrained().

	
	dict:

	Every element of the dictionary corresponds to one set of equality constraints.
Each set has to be be an entry of the form {…, x: y, …}
where x is the factor to be constrained and y is a factor by which levels of x are grouped
and then constrained. Set y=”1” to constrain all levels of x to sum to one,
a single equality constraint.

	E.g.: {“batch”: “condition”} Batch levels within each condition are constrained to sum to

	zero. This is applicable if repeats of a an experiment within each condition
are independent so that the set-up ~1+condition+batch is perfectly confounded.

Can only group by non-constrained effects right now, use constraint_matrix_from_string
for other cases.

	
	list of strings or tuple of strings:

	String encoded equality constraints.

E.g. [“batch1 + batch2 + batch3 = 0”]

	
	None:

	No constraints are used, this is equivalent to using an identity matrix as a
constraint matrix.

	size_factors – 1D array of transformed library size factors for each cell in the
same order as in data or string-type column identifier of size-factor containing
column in sample description.

	noise_model – str, noise model to use in model-based unit_test. Possible options:

	’nb’: default

	batch_size – The batch size to use for the estimator.

	training_strategy – {str, function, list} training strategy to use. Can be:

	str: will use Estimator.TrainingStrategy[training_strategy] to train

	function: Can be used to implement custom training function will be called as
training_strategy(estimator).

	list of keyword dicts containing method arguments: Will call Estimator.train() once with each dict of
method arguments.

	quick_scale – Depending on the optimizer, scale will be fitted faster and maybe less accurate.

Useful in scenarios where fitting the exact scale is not absolutely necessary.

	dtype – Allows specifying the precision which should be used to fit data.

Should be “float32” for single precision or “float64” for double precision.

	kwargs – [Debugging] Additional arguments will be passed to the _fit method.

diffxpy.api.fit.partition

	
diffxpy.api.fit.partition(data: Union[anndata._core.anndata.AnnData, anndata._core.raw.Raw, numpy.ndarray, scipy.sparse.csr.csr_matrix, batchglm.models.base.input.InputDataBase], parts: Union[str, numpy.ndarray, list], gene_names: Union[numpy.ndarray, list] = None, sample_description: pandas.core.frame.DataFrame = None, dmat_loc: patsy.design_info.DesignMatrix = None, dmat_scale: patsy.design_info.DesignMatrix = None, size_factors: Union[numpy.ndarray, pandas.core.series.Series, str] = None)

	Perform differential expression test for each group. This class handles
the partitioning of the data set, the differential test callls and
the sumamry of the individual tests into one
DifferentialExpressionTestMulti object. All functions the yield
DifferentialExpressionTestSingle objects can be performed on each
partition.

Wraps _Partition so that doc strings are nice.

	Parameters

	
	data – Array-like or anndata.Anndata object containing observations.
Input data matrix (observations x features) or (cells x genes).

	parts – str, array

	column in data.obs/sample_description which contains the split of observations into the two groups.

	array of length num_observations containing group labels

	gene_names – optional list/array of gene names which will be used if data does not implicitly store these

	sample_description – optional pandas.DataFrame containing sample annotations.

	dmat_loc – Pre-built location model design matrix.
This over-rides formula_loc and sample description information given in
data or sample_description.

	dmat_scale – Pre-built scale model design matrix.
This over-rides formula_scale and sample description information given in
data or sample_description.

	size_factors – 1D array of transformed library size factors for each cell in the
same order as in data or string-type column identifier of size-factor containing
column in sample description.

Tutorials

Differential testing

We grouped tutorials by differential expression concepts:

Introduction [https://nbviewer.jupyter.org/github/theislab/diffxpy_tutorials/tree/master/diffxpy_tutorials/test/introduction_differential_testing.ipynb] to differential expression testing.

Differential expression analysis with continuous [https://nbviewer.jupyter.org/github/theislab/diffxpy_tutorials/tree/master/diffxpy_tutorials/test/introduction_differential_testing.ipynb] covariates such time, concentratino, pseudotime or space.

How to run multiple [https://nbviewer.jupyter.org/github/theislab/diffxpy_tutorials/tree/master/diffxpy_tutorials/test/multiple_tests_per_gene.ipynb] tests per gene.

Additionally, we also provide links to tutorials that discuss specific concepts as a subset of the tutorial:

Single tests per gene

How to perform likelihood-ratio tests lrt [https://nbviewer.jupyter.org/github/theislab/diffxpy_tutorials/tree/master/diffxpy_tutorials/test/introduction_differential_testing.ipynb].

How to perform wald [https://nbviewer.jupyter.org/github/theislab/diffxpy_tutorials/tree/master/diffxpy_tutorials/test/introduction_differential_testing.ipynb] tests for a single parameter.

How to perform Wald tests for multiple [https://nbviewer.jupyter.org/github/theislab/diffxpy_tutorials/tree/master/diffxpy_tutorials/test/introduction_differential_testing.ipynb] parameters.

How to perform t-tests [https://nbviewer.jupyter.org/github/theislab/diffxpy_tutorials/tree/master/diffxpy_tutorials/test/introduction_differential_testing.ipynb].

How to perform wilcoxon [https://nbviewer.jupyter.org/github/theislab/diffxpy_tutorials/tree/master/diffxpy_tutorials/test/introduction_differential_testing.ipynb] (rank sum) tests.

Map single tests across partitions of data set

Diffxpy allows you to define a data set partition and to conduct test on each gene in each partition. This is shown`here <https://nbviewer.jupyter.org/github/theislab/diffxpy_tutorials/tree/master/diffxpy_tutorials/test/multiple_tests_per_gene.ipynb>`__.

Multiple tests per gene

How to perform pairwise [https://nbviewer.jupyter.org/github/theislab/diffxpy_tutorials/tree/master/diffxpy_tutorials/test/multiple_tests_per_gene.ipynb] tests.

How to perform group tests versus all other groups (versus rest [https://nbviewer.jupyter.org/github/theislab/diffxpy_tutorials/tree/master/diffxpy_tutorials/test/multiversus_rest.ipynb]).

Gene set enrichment: enrich

How to conduct a gene set enrichment workflow enrich [https://nbviewer.jupyter.org/github/theislab/diffxpy_tutorials/tree/master/diffxpy_tutorials/enrich/enrich.ipynb].

Example work-flows on real data sets

Will be added soon.

Parallelization

Most of the heavy computation within diffxpy functions is carried out by batchglm. batchglm uses numpy and tensorflow for the run-time limiting linear algebra operations. Both tensorflow and numpy may show different parallelization behaviour depending on the operating system. Here, we describe how one can limit the number of cores used by diffxpy by controlling its dependencies, numpy and tensorflow. Note that these limits may not be necessary on all platforms. Secondly, also note that such limits lead to suboptimal performance given the total resources of your machine.

tensorflow

Tensorflow multi-threading can be set before batchglm (and therefore diffxpy) are imported into a python session. Accordingly, you have to restart your python session if you want to change the current parallelization settings. Parallelization of tensorflow can be controlled via the following two environmental variables: call:

Before importing diffxpy.api or batchglm.api in your python session, execute:
import os
os.environ.setdefault("TF_NUM_THREADS", "1")
os.environ.setdefault("TF_LOOP_PARALLEL_ITERATIONS", "1")
import diffxpy.api as de

TF_NUM_THREADS controls the number of threads that are used for linear algebra operations in tensorflow, which controls parallelization during training. TF_LOOP_PARALLEL_ITERATIONS controls the number of threads which are used during tensorflow while_loops, which are used during hessian computation. Here, we set both to one so that only one thread is used by tensorflow within diffxpy.

The environmental variables are checked upon loading of batchglm and are converted into package constants which control the parallelization behaviour of tensorflow. These package constants can also be set after package loading, but they do not affect the behaviour anymore once a tensorflow session was started once. If you want to set parallilzation behaviour after loading the package but before fist using it, you can therefore run: call:

import diffxpy.api as de
from batchglm.pkg_constants import TF_CONFIG_PROTO
TF_CONFIG_PROTO.inter_op_parallelism_threads = 1
TF_CONFIG_PROTO.intra_op_parallelism_threads = x
from batchglm.pkg_constants import TF_LOOP_PARALLEL_ITERATIONS
TF_LOOP_PARALLEL_ITERATIONS = x

where x is the number of threads (integer) to be used within diffxpy.

numpy/scipy

Numpy/scipy multi-threading in the linalg sub-modules can be controlled as follows in the shell in which the python session is started in which diffxpy is used (e.g. the shell from which jupyter notebook is called): call:

export MKL_NUM_THREADS=1
export NUMEXPR_NUM_THREADS=1
export OMP_NUM_THREADS=1

Here, we restricted the number of threads to be used by numpy to 1. Numpy is not used for the run-time determining parameter estimation steps so that a larger number of threads has little effect on the overall run time. So far, we have only observed this to be necessary on some linux operating systems.

Training

Parameter estimation in diffxpy

diffxpy performs parameter estimation for generalized linear models (GLMs) with batchglm.
GLMs are necessary for Wald tests and liklihood ratio-tests, not for t-tests and Wilcoxon rank-sum tests.
batchglm exploits closed form maximum likelihood estimators in GLMs where possible, but often numerical parameter estimation is necessary.
Parameters for GLMs can be estiamted with iteratively weighted least squares (IWLS) (exponential family GLMs)
or via standard methods for maximum likelihood estimation which are based on local approximations of the objective function (e.g. gradient decent).
The latter cover a larger range of variance models and are applicable for all noise models and were therefore chosen for batchglm.
However, these methods often come with hyper-parameters (such as learning rates).
Differential expression frameworks often hide the training from the user,
diffxpy exposes training details to the user so that training can be monitored and hyperparameters optimized.
To reduce the coding effor and technical knowledge necessary for this, we expose core hyper-parameters within “training-strategies”.

Training strategies

Training strategies give the user to opportunity to change optimzer defaults such as the
optimizer algorithm, learning rates, optimizer schedules (multiple optimizers) and convergence criteria.
Please post issues on GitHub if you notice that your model does not converge with the default optimizer.

Models

Occurrence of estimator objects in diffxpy

GLMs and similar models are a main model class for differential expression analysis with Wald and likelihood ratio tests (LRT).
Diffxpy allows the user to choose between different GLMs based on the noise model argument.
The user can select the covariates that are to be modelled based on formulas or by supplying design matrices directly.
Both Wald test (de.test.wald) and LRT (de.test.lrt) require the fit of GLMs to the given data.
These fits can be extracted from the differential expression test objects that are returned by the de.test.* functions:
These objects are called model_estim in the case of the Wald test or full_estim and reduced_estim for the LRT (for full and reduced model).
Similarly, one can use de.fit.model to directely produce such an estimator object.

Structure of estimator objects

These estimator objects are the interface between diffxpy and batchglm and can be directly produced with batchglm.
An estimator object contains various attributes that relate to the estimation procedure and a .model attribute that contains an executable
(numpy) version of the estimated model.
The instance of the estimator object contains the raw parameter estimates and functions that compute downstream model characteristics,
such as location and scale parameter estiamtes in a generalized linear model, the equivalent of $hat{y}$ in a simple feed forward neural network.
The names of these model attributes depend on the noise model and are listed below

Generalized linear models (GLMs)

The estiamted parameters of the location and scale model are in estim.model.a_var (location) and estim.model.b_var (scale).
The corresponding parameter names are in estim.model.loc_names and estim.model.scale_names.
The observation and feature wise location and scale prediction after application of design matrix and inverse linker function are in estim.model.location and estim.model.scale.

For a negative binomial distribution model, the location model correpsponds to the mean model and the scale model corresponds to the dispersion model.
For a normal distribution model, the location model correpsponds to the mean model and the scale model corresponds to the standard deviation model.

References

 Python Module Index

 d

 		 	

 		
 d	

 	[image: -]
 	
 diffxpy	

 	
 	
 diffxpy.api	

Index

 _
 | D
 | L
 | M
 | P
 | R
 | T
 | V
 | W

_

 	
 	__init__() (diffxpy.api.enrich.RefSets method)

D

 	
 	diffxpy.api (module)

L

 	
 	lrt() (in module diffxpy.api.test)

M

 	
 	model() (in module diffxpy.api.fit)

P

 	
 	pairwise() (in module diffxpy.api.test)

 	
 	partition() (in module diffxpy.api.fit)

 	(in module diffxpy.api.test)

R

 	
 	rank_test() (in module diffxpy.api.test)

 	
 	RefSets (class in diffxpy.api.enrich)

 	residuals() (in module diffxpy.api.fit)

T

 	
 	t_test() (in module diffxpy.api.test)

 	
 	test() (in module diffxpy.api.enrich)

 	two_sample() (in module diffxpy.api.test)

V

 	
 	versus_rest() (in module diffxpy.api.test)

W

 	
 	wald() (in module diffxpy.api.test)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to diffxpy’s documentation!

 		
 Installation

 		
 API

 		
 Differential expression tests: test

 		
 Single tests per gene

 		
 Multiple tests per gene

 		
 Gene set enrichment: enrich

 		
 Reference gene sets

 		
 Enrichment tests

 		
 Fit model to gene expression: fit

 		
 diffxpy.api.fit.model

 		
 diffxpy.api.fit.residuals

 		
 diffxpy.api.fit.partition

 		
 Tutorials

 		
 Differential testing

 		
 Single tests per gene

 		
 Map single tests across partitions of data set

 		
 Multiple tests per gene

 		
 Gene set enrichment: enrich

 		
 Example work-flows on real data sets

 		
 Parallelization

 		
 tensorflow

 		
 numpy/scipy

 		
 Training

 		
 Parameter estimation in diffxpy

 		
 Training strategies

 		
 Models

 		
 Occurrence of estimator objects in diffxpy

 		
 Structure of estimator objects

 		
 Generalized linear models (GLMs)

 		
 References

_static/up-pressed.png

_static/up.png

